

Ministry of higher Education and Scientific Researches

BLOCK: Mental health care and Neurology

Neurology section lec.3

Stroke 2

Block staff:

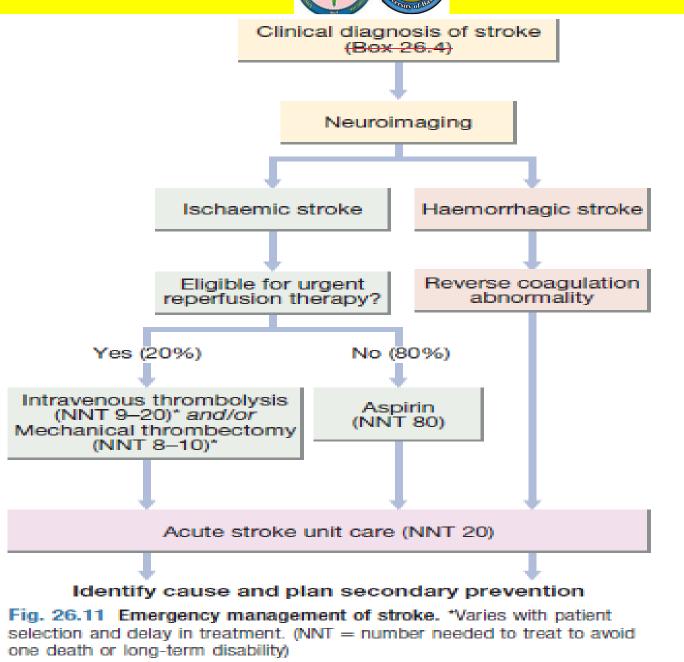
Dr. Ali Mohammed Radi \neurosurgeon.

Dr. Zainab Abdui-muhsin Abood/ neurosergen.

Davidson s principles and practice of medicine

objective

- 1. How to investigate patient with stroke by blood test and neuroimage?
- 2. Brain CT or MRI ?
- 3. Concentrate on the treatment and secondary prevention of srtoke ; minimising the volume of brain that is irreversibly damaged, preventing complications, reducing the patient's disability and handicap through rehabilitation, and reducing the risk of recurrent stroke or other vascular events. With TIA there is no persisting brain damage and disability, so the priority is to reduce the risk of further vascular events.
- 4. Aspirin or heparin ?
- 5. Can used thrombectomy?
- 6. Role of surgery in prevention of recurrent.



Stroke management

- 1. ABCDE in unconscious patients.
- 2. History and clinical examinations.
- 3. Investigations aims to
- <u>confirm</u> the vascular nature of a lesion,
- <u>distinguish</u> infarction from haemorrhage and
- identify the underlying vascular disease and risk factors.

4. Treatment and secondary prevention; minimising the volume of brain that is irreversibly damaged, preventing complications, reducing the patient's disability and handicap through rehabilitation, and reducing the risk of recurrent stroke or other vascular events.
With TIA there is no persisting brain damage and disability, so the priority is to reduce the risk of further vascular events.

Investigations

26.5 Investigation of a	a patient with an acute stroke
Diagnostic question Investigation	
Is it a vascular lesion?	CT/MRI
Is it ischaemic or haemorrhagic?	CT/MRI
ls it a subarachnoid haemorrhage?	CT/lumbar puncture
Is there any cardiac source of embolism?	ECG Holter monitoring Echocardiogram
What is the underlying vascular disease?	Duplex ultrasound of carotids MRA CTA Contrast angiography
What are the risk factors?	Full blood count Cholesterol Blood glucose
Is there an unusual cause?	ESR Serum protein electrophoresis Clotting/thrombophilia screen

Brain imaging with either CT or MRI should be performed in all patients with acute stroke..

- CT remains the most practical and widely available method of imaging the brain.
- It will usually exclude non-stroke lesions, including subdural haematomas and brain tumours, and will demonstrate intracerebral haemorrhage within minutes of stroke onset.
- However, especially within the first few hours after symptom onset, CT changes in cerebral infarction may be completely absent or only very subtle.
- Changes often develop over time but small cerebral infarcts may never show up on CT scans.
- For some purposes, a CT scan performed within 24 hours is adequate. but there are certain circumstances in which an immediate CT scan is essential. Even in the absence of changes suggesting infarction, abnormal perfusion of brain tissue can be imaged with CT after injection of contrast media (i.e. CT perfusion scanning). This can be useful in guiding immediate treatment of ischaemic stroke.

Indications for immediate CT/MRI in acute stroke

- 1. Patient on anticoagulants or with abnormal coagulation.
- 2. Consideration for reperfusion (thrombolysis) or immediate anticoagulation.
- 3. Deteriorating conscious level or rapidly progressing deficits.
- 4. Suspected cerebellar haematoma, to exclude hydrocephalus.

- MRI is not as widely available as CT and scanning times are longer. However, MRI diffusion weighted imaging (DWI) can detect ischaemia earlier than CT, and other MRI sequences can also be used to demonstrate abnormal perfusion.
- MRI is more sensitive than CT in detecting strokes affecting the brainstem and cerebellum.
- CT and MRI may reveal clues as to the nature of the arterial lesion. For example, there may be a small, deep lacunar infarct indicating small-vessel disease, or a more peripheral infarct suggesting an extracranial source of embolism. In a haemorrhagic lesion, the location might indicate the presence of an underlying vascular malformation, saccular aneurysm or amyloid angiopathy.
- More recently, CTA is being used to show vessel occlusion suitable for clot retrieval.

26.6 Causes and invest young patients	tigation of acute stroke in		
Cause	Investigation		
Cerebral infarct			
Cardiac embolism	Echocardiography (including transoesophageal)		
Premature atherosclerosis	Serum lipids	1.	
Arterial dissection	MRI	Primary intracerebral haemor	Thage
	CTA	AVM	MRI/MRA
Reversible cerebral	MRI		
vasoconstriction syndromes	CTA	Drug misuse	Drug screen (amphetamine,
Thrombophilia	Protein C, protein S		cocaine)
	Antithrombin III	Coagulopathy	PT and APTT
	Factor V Leiden, prothrombin	couguiopaariy	
Homocystinuria (p. 369)	Urinary amino acids		Platelet count
	Methionine loading test	Subarachnoid haemorrhage	
Antiphospholipid antibody	Anticardiolipin antibodies/lupus	-	
syndrome (p. 977)	anticoagulant	Saccular ('berry') aneurysm	MRI/MRA
Systemic lupus erythematosus	ANA	AVM	MRI/MRA
Vasculitis (e.g. primary anglitis of	ESR CRP	Vertebral dissection	MRI/MRA
the central nervous system)	ANCA	Vertebrar uissection	
CADASIL	MRI brain		
CARASIL	Genetic analysis	(ANA = antinuclear antibody; ANCA =	antineutrophil cytoplasmic antibody; APTT
CALMOIL	Skin biopsy		e; AVM = arteriovenous malformation;
Mitochondrial cytopathy	Serum lactate		nal dominant/recessive arteriopathy with
wittenen and eytopathy	White cell mitochondrial DNA		
	Muscle biopsy	subcortical infarcts and leucoencepha	
	Mitochondrial molecular genetics	CTA = computed tomographic anglog	raphy; ESR = erythrocyte sedimentation
Fabry's disease	Alpha-galactosidase levels	rate; MRA = magnetic resonance and	iography; MRI = magnetic resonance
Sickle cell disease	Sickle cell studies	imaging; PT = prothrombin time)	
Neurovascular syphilis	Syphilis serology	maging, r r = promonon ano/	

Management

Supportive care

Rapid admission of patients to a specialized stroke unit facilitates coordinated care from a specialized multidisciplinary team, and has been shown to reduce both mortality and residual disability amongst survivors.

Consideration of a patient's rehabilitation needs should commence at the same time as acute medical management. Dysphagia is common and can be detected by an early bedside test of swallowing. This allows hydration, feeding and medication to be given safely, if necessary by nasogastric tube or intravenously.

In the acute phase, a checklist may be useful to ensure that all the factors that might influence outcome have been addressed.

Blood pressure, Unless there is heart or renal failure, evidence of hypertensive encephalopathy or aortic dissection, do not lower blood pressure abruptly in first week as it may reduce cerebral perfusion. Blood pressure often returns towards patient's normal level within days.

Blood glucose

• Check blood glucose and treat when levels are ≥11.1 mmol/L (200 mg/dL) (by insulin infusion or glucose/potassium/insulin (GKI)

• Monitor closely to avoid hypoglycaemia.

> Temperature

- If pyrexic, investigate and treat underlying cause
- Control with antipyretics, as raised brain temperature may increase infarct volume.

Pressure areas

- Reduce risk of skin breakdown:
- 1. Treat infection
- 2. Maintain nutrition
- 3. Provide pressure-relieving mattress
- 4. Turn immobile patients regularly

Incontinence

- Check for constipation and urinary retention; treat these appropriately
- Avoid urinary catheterization unless patient is in acute urinary retention or incontinence is threatening pressure areas
- Mobilization
- Avoid bed rest.

Ministry of higher Education and Scientific Researches

	Complications	Prevention	Treatment
	Epileptic seizures	Maintain cerebral oxygenation Avoid metabolic disturbance	Anticonvulsants
	Depression and anxiety	Maintain positive attitude and provide information	Antidepressants
	Painful shoulder	Avoid traction injury Shoulder/arm supports Physiotherapy	Physiotherapy Local glucocorticoid injections
	Chest infection	Nurse semi-erect Avoid aspiration (nil by mouth, nasogastric tube, possible gastrostomy)	Antibiotics Physiotherapy
	Constipation	Appropriate aperients and diet	Appropriate aperients
	Urinary infection	Avoid catheterisation if possible Use penile sheath	Antibiotics
1	Pressure sores	Frequent turning Monitor pressure areas Avoid urine damage to skin	Nursing care Pressure-relieving mattress
	Deep vein thrombosis/ pulmonary embolism	Maintain hydration Early mobilisation Heparin (for high-risk patients only)	Anticoagulation (exclude haemorrhage first)

Reperfusion (thrombolysis and thrombectomy)

Rapid reperfusion in ischaemic stroke can reduce the extent of brain damage. Intravenous thrombolysis with **recombinant tissue plasminogen activator (rt-PA)** increases the risk of haemorrhagic transformation of the cerebral infarct with potentially fatal results.

The main contraindications are bleeding risk (recent haemorrhage, anticoagulant therapy) and delay to treatment; the earlier treatment is given, the greater the benefit. However, if given within 4.5 hours of symptom onset to carefully selected patients, the haemorrhagic risk is offset by an improved overall outcome.

Recently mechanical clot retrieval (thrombectomy) in patients with a large-vessel occlusion can greatly improve the chances of avoiding disability.

Aspirin

In the absence of contraindications, aspirin (300 mg daily) should be started immediately after an ischaemic stroke unless rt-PA has been given, in which case it should be withheld for at least 24 hours.

Aspirin reduces the risk of early recurrence and has a small but clinically worthwhile effect on long-term outcome.

it may be given by rectal suppository or by nasogastric tube in dysphagic patients.

Heparin

Anticoagulation with heparin has been widely used to treat acute ischaemic stroke in the past. While it reduces the risk of early ischaemic recurrence and venous thromboembolism, it increases the risk of both intracranial and extracranial haemorrhage. Furthermore, routine use of heparin does not result in better long-term outcomes, and therefore it should not be used in the routine management of acute stroke.

Anticoagulant

Warfarin should not be started before 2 weeks.

Patients with AF is indicated for anticoagulant according to CHADS2 score and CHA2DS2-

VASc

score ≥ 2 : recommend oral anticoagulation.

CHADS₂ -> CHA₂DS₂VASc

CHADS2 Risk	Score	CHA2DS2-VASc Risk	Score
CHF	1	CHF or LVEF ≤ 40%	1
Hypertension	1	Hypertension	1
Age > 75	1	Age ≥75	2
	-	Diabetes	1
Diabetes	1	Stroke/TIA/ Thromboembolism	2
Stroke or TIA	2	Vascular Disease	1
From ESC AF Guidelines http://escardio.org/guidelines-surveys/ esc-guidelines/GuidelinesDocuments/ ruidelines.off.cT.adf.		Age 65 - 74	1
		Female	1

esc-guidelines/GuidelinesDocuments/ guidelines-afib-FT.pdf

Carotid endarterectomy and angioplasty

A small proportion of patients with a carotid territory ischaemic stroke or TIA will have more than 50% stenosis of the carotid artery on the side of the brain lesion. Such patients have a greater than average risk of stroke recurrence.

For those without major residual disability, removal of the stenosis has been shown to reduce the overall risk of recurrence, although the operation itself carries about a 5% risk of stroke.

Surgery is most effective in patients with more severe stenoses (70–99%) and when it is performed within the first couple of weeks after the TIA or ischaemic stroke. Carotid angioplasty and stenting are technically feasible but have not been shown to be as effective as endarterectomy for the majority of eligible patients.

Endarterectomy of asymptomatic carotid stenosis has been shown to reduce the subsequent risk of stroke but the small absolute benefit does not justify its routine use.

Ministry of higher Education and Scientific Researches

